

www.dbi-gruppe.de

CapTransCO2

"Machbarkeit einer klimaneutralen mitteldeutschen Industrie durch den Aufbau einer vernetzten CO₂-Transportinfrastruktur für CCU/CCS"

CO₂ als neuer Forschungsschwerpunkt

"Machbarkeit einer klimaneutralen mitteldeutschen Industrie durch den Aufbau einer vernetzten CO₂-Transportinfrastruktur für CCU/CCS"

Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages

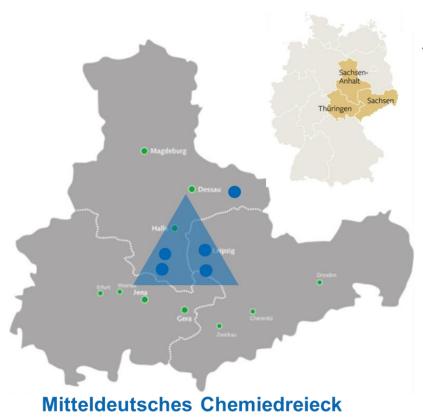
CapTransCO2 - Projektkonsortium

Projektpartner

LEUNA

POX & Raffinerie

LEIPZIG


Gastransport

LEIPZIG

Wissenschaftliche Begleitung

Assoziierte Partner

LUTHERSTADT WITTENBERG

Ammoniak Harnstoffe

KARSDORF

Zement

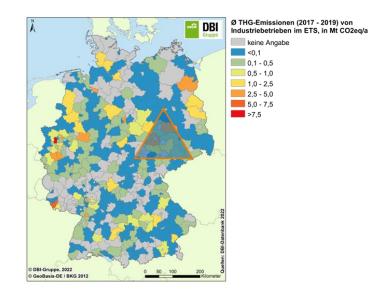
thomas gruppe

BÖHLEN

Kunststoffe und Spezialchemikalien

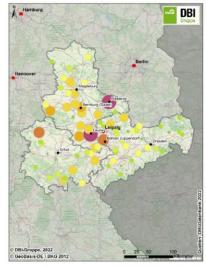
LEIPZIG

Gastransport



CapTransCO2 - Projektziele

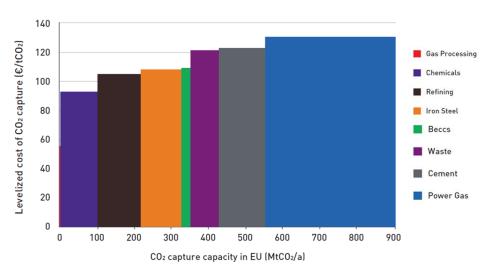
- Machbarkeitsstudie zur Schaffung einer zukunftsfähigen CO₂-Infrastruktur für CCU/CCS
- Betrachtung der Emittenten der Bundesländer Sachsen, Sachsen-Anhalt und Thüringen
- Nutzungspotentiale f
 ür CCU
- Transportoptionen
 - Schiff, Bahn und Pipeline
 - Zwischenspeicherung
- Kostenbetrachtung
- Darstellung der Ausbaustufen bis 2030 f
 ür zuk
 ünftige Entwicklungen



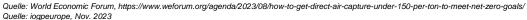
- https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionenin-deutschland#emissionsentwicklung
- ² VET-Bericht 2019, DEHSt, S.69 f. (Sachsen, Sachsen-Anhalt, Thüringen)

CapTransCO2 - Emissionen

- Quantifizierung und regionale Verortung industrieller CO₂-Emissionen
- Basis öffentlich zugängliche ETS-Daten für Gesamtdeutschland
- Anreicherung der Datenbasis um Informationen zu Abgaszusammensetzung und unterjährigem Verlauf sowie zukünftigen CO2-Reduktionsmaßnahmen anhand individueller Emittentenbefragung
- 137 Anlagen im Untersuchungsgebiet f
 ür rund 12 % der gesamtdeutschen THG-Emissionen verantwortlich
- Gegenwärtig der überwiegende Anteil (~3/4) des CO₂-Angebots industriellen Ursprungs

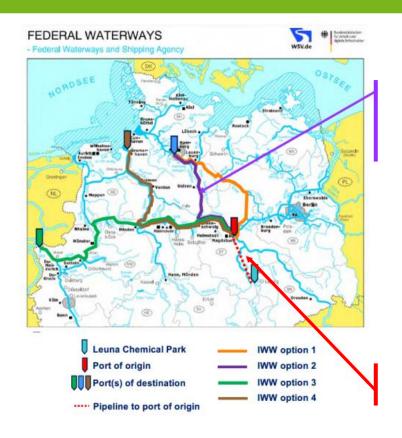

	Keine Angabe
	1 - 2 kt CO2eq
•	2 - 5 kt CO2eq
•	5 - 10 kt CO2eq
	10 - 25 kt CO2eq
	25 - 50 kt CO2eq
	50 - 100 kt CO2eq
	100 - 500 kt CO2eq
	500 - 1.000 kt CO2eq
	1.000 - 2.000 kt CO2eq
	2.000 - 10.000 kt CO2eq

Тур	Status quo (2019)	2030	Bemerkung	
	kt /a	kt /a		
Industrie	6.105	2.400	Befragungsdaten mit positiver Aussage zu CCS 2030	
Müllverbrennungs-	1 140	L A (1.140)	lising Düslims Idions had 2020 authorid Defensions	
anlagen (MVA)	1.140	k.A. (1.140)	40) keine Rückmeldung bzgl. 2030 anhand Befragung	
Biogen (BGA, BGEA)	780	1.451	modellierte Werte anhand BGEA, geplante/progn. Anlagen bis 2030	
Summe	8.025	4.991		



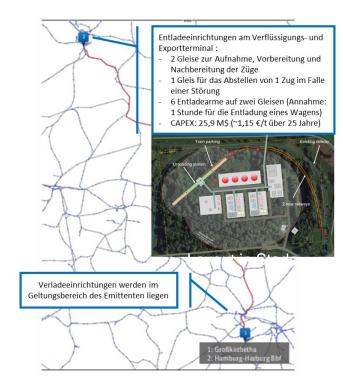
CO₂-Abscheidung

- Großtechnische CO₂-Abtrennungs- und Konditionierungstechnologien
- Direct Air Capture ist signifikant teurer (600 1.000 USD/t)
- Auswahlkriterien: Volumenstrom und CO₂-Konzentration sowie CO₂-Reinheit (Transporterfordernisse – C260)



Kriterium	Absorption	Membrantrennung
Trennprinzip	Lösen in einer Waschflüssigkeit	Selektive Permeation einer Membran
Betriebsmittel	Waschflüssigkeiten	Membrane
Betriebsbedingungen	p ↑ ; T↓	p ↑ ; T↓
CO₂-Reinheiten	> 99,5 % (chem.) < 98,0 % (phys.)	< 98 %
Technology Readiness Level (TRL)	7 bis 9	4 bis 5
Spez. Energiebedarf	elektr.: 0,05 – 0,5	elektr.: 0,1 – 0,6
[kWh/m³ CO₂]	therm.: 0,1 – 1,4	therm.: 0,2 – 1,2
Entwicklungspotenzial	Ausgereift	Membranen
Vorteile	Skalierbar	Modularer Aufbau, flexibel, Skalierbar
Nachteile	Temperaturstabilität (durch thermische Regeneration)	Fehlender Nachweis der Langzeitstabilität der Membranen
	- ,	

CO₂-Transport Binnenschiff

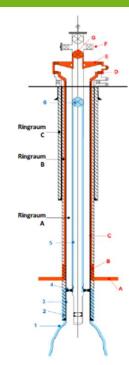


- Studie wurde im Unterauftrag von Hamburg Port Consulting durchgeführt
- LCO₂-Barge (Binnenschiffe für flüssiges CO₂) gibt es aktuell nicht
- Lila Route (Magdeburg, Hamburg) am besten geeignet (kurze Entfernung und geringe Tiefenbeschränkung)
- Konsultation Binnenschiffsbetreiber (GEFO, HGK)
 - Schiffe von maximal 2.300 t
 - 15-16 bar und -30 °C
 - CO₂-Emissionen: 55-60 g/(t*km)
 - Flotte von etwa 30 Schiffen f
 ür 5 Mio. t CO₂/a
 - 5-6 Schiffe auf Mittelland- und Elbe-Seitenkanal machbar
- Nur 1 Mio. t/a möglich + 100 km Pipeline oder Zugtransport

CO₂-Transport Bahn

- Studie unter Mitwirkung des VDZ (Zementhersteller) und der VTG (Hersteller Eisenbahnwaggons)
- Begrenzte Kapazität des deutschen Schienennetzes
- Etwa 50 Waggons für CO₂ gibt es in Deutschland (-40 °C, 16 bar, isoliert aber nicht aktiv gekühlt)
- Annahmen / Werte
 - Strecke Leuna (Großkorbetha) Hamburg: 347 km
 - 58 t / Waggon 24 Waggons / Zug = 1.392 t / Zug
 - 6 Tage f
 ür Fahrt, Ladung (Taktzeiten, Nachtfahrt)
- Ergebnisse:
 - Maximal 14 Züge/Woche = 0,9 Mio. t CO₂/a
 - Emissionen: 5,7 kg CO₂ / t transportiertes CO₂ + erste/letzte Meile

→ Kapazität begrenzt & zusätzliche CO₂ Emissionen



CO₂-Pipelinetransport und Zwischenspeicherung

- Großvolumiger CO₂-Transport im Binnenland nur via Pipeline, Alternativen kapazitätsseitig begrenzt, signifikant teurer und mit CO₂-Emissionen verbunden
- Vorhandene Erdgasleitungen für CO₂-Transport nur bedingt nutzbar
 - Freie Trassen für H₂-Kernnetz reserviert
 - Transport in der dichten Phase erfordert höheren Druck → höhere Wandstärken
 - Flüssiger Transport bei größeren Volumina wirtschaftlicher hier: ab 5 bis 10 Mio. t/a

CO₂-Zwischenspeicherung

- Zwischenspeicherung herausfordernder, da im Druckbereich der Kavernen der Phasenübergang liegt
- Flache und damit "kühle" Kavernen besser für Zwischenspeicherung von flüssigem CO₂
- Sichere Zwischenspeicherung in technisch möglich (inkl. Zementation)
- Hoher systemischer Wert durch große Volumina gerade bei zeitlichen Unsicherheiten wie Schiffstransport
- · Für betrachtetes System ist 1 Kaverne ausreichend
 - Keine Konkurrenzsituation zur Erdgas- und Wasserstoffspeicherung
 - Typische Kavernenspeicher haben 20-30 individuelle Kavernen

Bundesverband Erdgas, Erdöl und Geoenergie e.V. (2021) Technische Regel Bohrungsintegrität

Sammelnetz

Grundsätze des Trassenverlaufs

- Zielpunkt ist Zwischenspeicher in Bad Lauchstädt
- Größte Emittenten in Mitteldeutschland angeschlossen
- Vermeidung technisch herausfordernder Querungen sowie Umgehung von Gebieten mit hohem Raumwiderstand (z.B. bebaute Gebiete, Rohstoffabbau, Naturdenkmäler, Geotope)
- Berücksichtigung von Gebieten mit erhöhtem Genehmigungsaufwand (Wasserschutzgebiete, FFH-Gebiete, § 30 BNatSchG Biotope, Wälder)
- Trassenbündelung, Orientierung an Flurstücksgrenzen

→ Gasförmiger Transport, da wirtschaftlicher als Transport von flüssigem CO₂

Pipelinetrassen / Transportleitung

3 mögliche Trassen von Bad Lauchstädt zu Seehäfen untersucht, Grobkartierung inkl. Kostenabschätzung

- Nordsee-Route: Bad Lauchstädt Stade
- Ostsee-Route: Bad Lauchstädt Rostock unter Mitnahme Emittenten Berlin/Brandenburg
- Rhein-Ruhr Weiterleitung über CO₂-Anschluss zu den Niederlanden
 - Diese Route wegen ungünstiger Topografie (Mittelgebirge) nicht weiter verfolgt.
- Nord- und Ostseeroute haben n\u00f6rdlich Linie Hannover-Berlin keine potenziellen CO₂-Einspeiser
- Transport gasförmig, da bis zur angenommenen Kapazität von 5 Mio. t/a günstiger

Kostenanalyse

Abscheidung, Zwischenspeicherung und Transport

Von der Quelle bis zur Küste – beispielhafte Rechnung

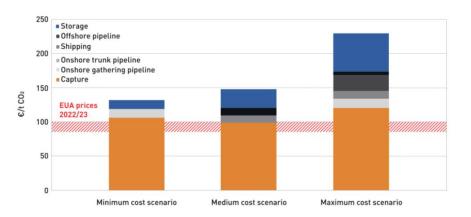
Komponente	Größe	Annuität Mio €/a	Spez. Annuität €/t
Abscheidung + Kompression	5 Mio.t/a 22,7 MW	406,2 36,2	88,5
Sammelnetz	431 km, 25 bar	32,7	6,5
Zwischen- speicher	156.000 t CO ₂	14,0	2,8
Backbone + Kompression	370 km, DN 1000, 14.4 MW	38,2 23,2	7,6

Backbone: Bad Lauchstädt - Stade

Annuitäten beziehen sich auf Kapital- und Betriebskosten CO₂-Transport:

Gasförmig (basierend auf 5 Mio.t CO₂/a)

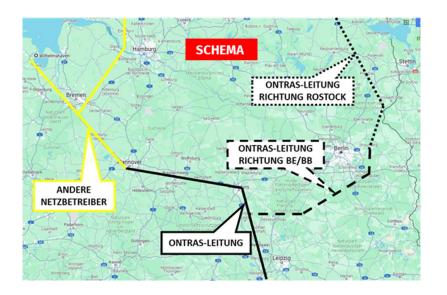
Rahmenbedingungen:


Parameter	Wert	
Betrachtungszeitraum	20 Jahre	
Jährliche CO ₂ -Menge	5 Mio.t	
Zinsfaktor	5,00 %	
Preisänderungsfaktor	2,00 %	
Stromkosten (1. Jahr)	0,12 €/kWh	

Ergebnis **Beispielrechnung** von Abscheidung bis zur Küste **ca. 105 €/t CO**₂

Kostenanalyse

Kostenschätzung Einordnung Gesamtkette CCS (außerhalb des Projektes)



Quelle: "Creating a sustainable business case for CCS value chains - the needed funding and de-risking mechanisms" - IOGP, November 2023

Pipelinetrassen 2.0

- Beide untersuchten Routen (Stade, Rostock) erfassen nicht alle großen Emittenten in Ostdeutschland
- Investitionsbedarf >> 1 Mrd. Euro
- Inbetriebnahme 2033 ± 2 Jahre
- Signifikantes Kostensenkungspotential durch Aufbau eines offenen, diskriminierungsfreien ganzheitlichen CO₂-Transportnetzes zur Vermeidung von doppelten CO₂-Infrastrukturen

NEU: Verkürzte Route mit Tie-in anderes Netz Bad Lauchstädt – Magdeburg – Hannover Länge: 270 km

Zusätzliche Anschlüsse:

Sachsen - Böhlen (DOW) plus 53 km

Berlin/Brandenburg inkl. Abzweig nach Wittenberg plus ca. 200 km

Mecklenburg-Vorpommern – über Schwedt plus 300 km

Potentielle Erweiterung nach **Thüringen und Nachbarländer** noch nicht betrachtet

Zusätzliche CO₂-Mengen durch mögliche Erweiterung nach Tschechien und Polen

Haben Sie fragen, dann sprechen Sie uns gern an!

Ihre Ansprechpartner

Dr. Jörg Nitzsche

Geschäftsführer

Tel.: +49 (0) 3731 - 4195 300

E-Mail: joerg.nitzsche@dbi-gruppe.de

DBI Gas- und Umwelttechnik GmbH Karl-Heine-Straße 109/111 · D-04229 Leipzig

Dr. Rico Rockmann

Teamleiter Gaschemie & Gasaufbereitung

Tel.: +49 (0) 341 - 2457 166

E-Mail: rico.rockmann@dbi-gruppe.de

www.dbi-gruppe.de

